

Course Specifications

Course Title:	Differential Geometry
Course Code:	Math 463
Program:	B.Sc. in Mathematics
Department:	Mathematics
College:	Science
Institution:	King Abdulaziz University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	4
2. Course Main Objective	4
3. Course Learning Outcomes	5
C. Course Content	
D. Teaching and Assessment7	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	7
2. Assessment Tasks for Students	9
E. Student Academic Counseling and Support9	
F. Learning Resources and Facilities10	
1.Learning Resources	10
2. Facilities Required	10
G. Course Quality Evaluation10	
H. Specification Approval Data11	

A. Course Identification

1. Credit hours: 3
2. Course type
a. University College Department Others
b. Required Elective
3. Level/year at which this course is offered: Level 8, Year 4
4. Pre-requisites for this course (if any): Calculus III (Math 203)
5. Co-requisites for this course (if any): None

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	57	95%
2	Blended		
3	E-learning	3	5%
4	Correspondence		
5	Other		

7. Actual Learning Hours (based on academic semester)

No	Activity	Learning Hours
Conta	et Hours	
1	Lecture	45
2	Laboratory/Studio	-
3	Tutorial	15
4	Others (specify)	
	Total	60
Other	Learning Hours*	
1	Study	2 hours per week
2	Assignments	
3	Library	
4	Projects/Research Essays/Theses	3 per week
5	Others (specify)	
	Total	5 hours per week

* The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

B. Course Objectives and Learning Outcomes

1. Course Description

• General introduction to the theory of curves in R^n

Parametrized curves, regular curves, tangent vector, arc-length, reparametrization, curvature.

- Theory of curves in R^2: Unit tangent vector, singular plane curve, singularity, unit normal vector, singed curvature of a plane curve (specific formula), inflection points, fundamental theorem of plane curve, evolutes and involutes.
- Theory of curves in R^3:

Tangent vector, principal normal vector and binormal vector, curvature, torsion, Serret – Frenet equations, fundamental theorem of space curve, spherical indicatrices, general helix, Bertrand curves.

• Theory of surfaces in R^3:

Parametrized surface, regular parametrized surface, normal of regular surface, tangent plane, first and second fundamental forms, principal curvatures, Gaussian curvature, mean curvature, umbilical points, normal curvature, geodesic curvature, principal directions, Lines of curvature.

2. Course Main Objective

- The Course aims to give the students the basic principles, definitions and formulas of different differential geometry mathematical topics which related to curves and surfaces in space
- Introducing parametrization of plane curves and surfaces.
- Students should recognize specific definitions and formulas and apply them in problem solving materials.
- Students should recognize curves on surfaces and various types of curvatures and geodesics.
- Improving the logical thinking and imagination of students.
- Applying many techniques to solve mathematical problems.
- Improving the skills of the students for better understanding of partial differentiation and integration.

3. Course Learning Outcomes

CLOs		Aligned PLOs
1	Knowledge:	
1.1	 Chapter Zero: Recall the Three-Dimensional Coordinate System. Memorize and identify Vector properties. Chapter 3 3.1 Define Parametric representation of a curve, regular parametric representation, allowable change of parameter, singular point and a regular curve. 3.2 List examples of curves. 3.3 Identify the Orthogonal Projections. 3.4 write formulas of implicit differentiation of curves. 3.5 Introduce the meaning if class C^m. 3.6 Give Formulas and explain how to calculate: Arc Length of a curve. 	
1.2	Chapter 4 4.1& 4.2 Identify and sketch the tangent vector. Give formulas of different kind of equations for the Normal plane.	
2	Skills :	
2.1	 4.3& 4.4 Discover and calculate the curvature of a curve and summarize connections to the first derivative of the vector function. 4.5 & 4.6 Design and construct the moving trihedron. 4.7 Construct formula to calculate Torsion. 4.7 Apply general formulas to evaluate Curvature and Torsion. 4.8 Summarize and describe spherical indicatrices. 	
2.2	 4.8 Explain how to give idea about local shape of a curve. 5.1 Design, justify contact between curves and surfaces. 5.1 Compose the Osculating Sphere regarding to number of point of contacts. 5.2 Reconstruct formulas to calculate center of curvature 5.3 Demonstrate the Tangent lines and perform Involute and Evolute of a curve <i>C</i>. 5.3 Develop and create Helices, then apply their geometrical significance to formulate curvature and torsion. 5.3 Construct Bertrand Curves and interpret its properties to modify their torsions. 8.1 Review Local differential geometry of surfaces. 8.2 Establish a new formula for the tangent plane equation by using the Normal vector. 9.1 9.3 Compose the First and Second Fundamental form to create a new kinds of curvature. 	

	CLOs	
	9.4 Build the Principal Curvature and Principal Directions.	
3	Competence:	
3.1	The Student is expected to carry out an independent investigation of the topic by studying the materials regularly, doing their homework on time, attending the lectures strictly and discuss their difficulties with their instructor.	
3.2	Interact with fellow students and instructor to obtain sufficient information and analyze this information to calculate and get logical conclusions.	

C. Course Content

No	List of Topics	Contact Hours
0	Chapter zero : Refresh some previous knowledge,	4
1	 1.1General introduction to the theory of curves in the n-dimensional 1.2 Examples of curves. 1.3Orthogonal projections. 1.4 Implicit representations of curves. 1.5 Regular curves. 1.6 Tangent curves and Tangent vector. Arc length. parametrization.Curvature. Theory of curves in 2nd dimensional, Unit tangent vector. 	14
2	 2.1 Moving Trihedron. 2.2 Curvature. 2.3 Binormal moving trihedron. 2.4 Torsion. 2.5 General formulas for curvature and torsion. 2.6 Spherical indicatricies. 2.7 Local shape of curve. 2.8 Contact between curves and surfaces. 2.9 Osculating sphere. 2.10 Locus of center of curvature. 2.11 Involutes and evolutes. 2.12 Helices. 2.13 Bertrand curves 	28
3	 3.1 Surfaces. 3.2 Curves on surfaces. 3.3 Angle and area. 3.4 Tangent plane and normal line. 3.5 Fundamental forms I and II 3.6 Principal curvature and principal directions. 3.7 Lines of curvature. 	14

6

60

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge		
1.1	 Chapter Zero: Recall the Three- Dimensional Coordinate System. Memorize and identify Vector properties. 1.1. Define Parametric representation of a curve, regular parametric representation, allowable change of parameter, singular point and a regular curve. 1.2 List examples of curves. 1.3 Identify the Orthogonal Projections. 1.4 write formulas of implicit differentiation of curves. 1.5 Introduce the meaning if class <i>C^m</i>. 1.6 Give Formulas and explain how to calculate :Arc Length of a curve. 	 Lectures Hand-outs Textbooks Kahoot Class Discussion 	 Home Work Assignments In-Class Questions Quizzes MCQ Exams
1.2	2.1 Identify and sketch the tangent vector.Give formulas of different kind of equations for the Normal plane.	 Lectures Hand-outs Textbooks Kahoot Class Discussion 	 Home Work Assignments In-Class Questions Quizzes Written Exams
2.0	Skills	J	J
2.1	 2.2 Discover and calculate the curvature of a curve and summarize connections to the first derivative of the vector function. 2.3 Design and construct the moving trihedron. 2.4 Construct formula to calculate Torsion. 2.5 Apply general formulas to evaluate Curvature and Torsion. 2.6 Summarize and describe spherical indicatrices. 	 Small group work Discussion and debate. 	 Peer assessment self- assessment written exams

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
2.2	 2.7 Explain how to give idea about local shape of a curve. 2.8 Design, justify contact between curves and surfaces. 2.9 Compose the Osculating Sphere regarding to number of point of contacts. 2.10 Reconstruct formulas to calculate center of curvature 2.11 Demonstrate the Tangent lines and perform Involute and Evolute of a curve <i>C</i>. 2.12 Develop and create Helices, then apply their geometrical significance to formulate curvature and torsion. 2.13 Construct Bertrand Curves and interpret its properties to modify their torsions. 3.1 Review Local differential geometry of surfaces. 3.2 Compare the curves on Surfaces. 3.3 Evaluate angle and Area of Surfaces. 3.4 Establish a new formula for the tangent plane equation by using the Normal vector. 3.5 Compose the First and Second Fundamental form to create a new kinds of curvature. 3.6 Build the Principal Curvature and Principal Directions. 	 Group work Problem solving 	 In-class activity written exams
3.0	Competence	L	L
3.1	The Student is expected to carry out an independent investigation of the topic by studying the materials regularly, doing their homework on time, attending the lectures strictly and discuss their difficulties with their instructor.	 Group discussion Feedback of oral and written exams Encourage the students for teamwork activities 	 Oral exams Presentation Summarizing Self-readings

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
3.2	Interact with fellow students and instructor to obtain sufficient information and analyze this information to calculate and get logical conclusions.	 Small group work Brain storming Students practice some uncovered examples 	 Peer review In-class activities presentation

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Exam 1	7 th week	30%
2	Exam 2	12 th week	30%
3	Home Work	Weekly- Distributed through the semester	3 % Bonus
4	Final Exam	16 th week	40%
	Total		100%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

The instructor is available for at least six hours per week and through e-mails.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	Differential Geometry (Schaum's outline) Martin Lipschutz	
Essential References Materials	 An Introduction to Differential Geometry T.J.Willmore Introduction to Differential Geometry and Riemannian Geometry Erwin Kreyszig Differential and Riemannian Geometry Detlef Laugwitz Differential Geometry with Applications to Mechanics and Physics. Marcel Dekker, Inc., 2000 	
Electronic Materials	Khan Academy and Youtube.	
Other Learning Materials	 Syllabus Rules and regulations of the course and faculty Lecture hand-outs. 	

2. Facilities Required

Item	Resources		
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Class room with capacity of 40-60 studentsWide White board in a large size.		
Technology Resources (AV, data show, Smart Board, software, etc.)	Data show projectors.Smart Board		
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None		

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Obtaining Student Feedback on Effectiveness of Teaching.	By the Instructor	 Discussion at the end of the lecture Course evaluation survey The instructor distribute a survey by himself to get feedback about his

Evaluation Areas/Issues	Evaluators	Evaluation Methods
		teaching on the spot from the students
Other Strategies for Evaluation of	By the Instructor or by the	• Discussion often
Teaching.	Department.	• Discussion after feedback
		• Peer review
		• In case of a commo course, the coordinator must
		obtain the feedback of the whole facult
		students that involved in the course and submit
		her/his report to the chairman of the
		department
		• The chairman must try to implement th suggestions raised I the coordinator to
		 improve the course Reports of optional
		courses have to be analyzed carefully and proper actions have to be taken.
		• In this semester the instructor distribute
		her own survey by the 13 th week to see
		what actions are needed to be
		changed, added or
		stopped.

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	